

Reconocimiento de cultivos agrícolas en regiones tropicales usando secuencias de imágenes de teledetección de sensores activos y pasivos

Ph.D. Pedro M. Achanccaray Diaz

pedro.diaz@puc-rio.br

Outline

- 1. Introducción
- 2. CRFs
- 3. Resultados
- 4. Conclusiones

Outline

1. Introducción

2. CRFs

3. Resultados

4. Conclusiones

- Agricultura
 - Fuente de sustento
 - Contribuye a los ingresos nacionales
 - Fuente de materia prima
 - Suministro de alimentos y pasto

- Agricultura Retos
 - Reducir impacto ambiental

- Agricultura Retos
 - Reducir impacto ambiental
 - Aumento de la demanda de alimentos

Fuente: FAO – UN (Food and Agriculture Organization of the United Nations) THENKABAIL, P. S.. Land resources monitoring, modeling, and mapping with remote sensing. CRC Press, 2015.

- Agricultura Retos
 - Reducir impacto ambiental
 - Aumento de la demanda de alimentos
 - Reducir la brecha de rendimiento (*yield gap*)

Fuente: MUELLER, N. D.; GERBER, J. S.; JOHNSTON, M.; RAY, D. K.; RAMANKUTTY, N. ; FOLEY, J. A.. Closing yield gaps through nutrient and water management. Nature, 490(7419):254, 2012.

- Agricultura Soluciones
 - Mapear tipos de cultivos y área cultivada
 - Inventarios sobre cultivos
 - Predicción de rendimiento
 - Monitoreo de actividades agrícolas

Source: European Space Agency – ESA

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario)

- Agricultura Teledetección (Remote Sensing)
 - Gran cobertura
 - Alta frecuencia y repetitivo
 - Costo relativamente bajo
 - Resoluciones espaciales
 - Bajo, medio y alto

Sentinel-1 Constellation Observation Scenario: sentinel-1 **Revisit & Coverage Frequency** validity start: 02/2018 1//1 141 Munully man and a second second **FREQUENCY** * PASS REVISIT COVERAGE FREQUENCY ** REFERENCE DATA SITES (6d repeat) **ASCENDING** \\\\ 6 days \\\\' 12 days days Highly active volcanism MA DESCENDING 1-3 days Fast subsidence XXX 2-4 days Short growth cycle, intensive agriculture Fast changing wetlands coverage ensured from same, repetitive relative orbits Fast moving outlet glaciers coverage not considering repetitiveness of relative orbits Permafrost & glaciers

• Teledetección (Remote Sensing)

- Source: NASA Earth Observatory (https://earthobservatory.nasa.gov/features/SoilMoisture) • Teledetección (Remote Sensing) Sensores pasivos Ópticos 40 ✓ humedad ✓ clorofila **Sensor Pasivo** Año agrícola

Source: NASA Earth Observatory (https://earthobservatory.nasa.gov/features/SoilMoisture)

• Teledetección (Remote Sensing)

- Sensores activos
 - Radar de abertura
 - Sintética (SAR)

Año agrícola

- Teledetección (Remote Sensing)
 - Sensores pasivos
 - Ópticos

Source: NASA Earth Observatory (https://earthobservatory.nasa.gov/features/SoilMoisture)

- Sensores activos
 - Radar de abertura
 - Sintética (SAR)

• Teledetección (Remote Sensing)

Composición RGB de imagen Sentinel-2A adquirida el 19 de Junio, 2018 en Bahia, Brazil

Sensor Pasivo

Banda C, SAR, polarización VH, imagen Sentinel-1A adquirida el 19 de Junio, 2018 en Bahia, Brazil

Sensor Activo

Características de Cultivos Agrícolas

- Características de Cultivos Agrícolas
 - Información de contexto
 - "everything is related to everything else, but near things are more related than distant things"– Waldo Tobler. (1st Law of Geography)

- Características de Cultivos Agrícolas
 - Información de contexto
 - "everything is related to everything else, but near things are more related than distant things"– Waldo Tobler. (1st Law of Geography)
 - Contexto Espacial

- Características de Cultivos Agrícolas
 - Información de contexto
 - "everything is related to everything else, but near things are more related than distant things"
 Waldo Tobler. (1st Law of Geography)
 - Contexto Espacial

Contexto Temporal

20/04/2018

30/04/2018

01/05/2018

10/05/2018

24/06/2018

19/06/2018

18/06/2018

02/06/2018

Outline

1. Introducción

2. CRFs

3. Resultados

4. Conclusiones

- Conditional Random Fields (CRFs)
- Clasificador discriminativo, basado en grafos

- Conditional Random Fields (CRFs)
- Clasificador discriminativo, basado en grafos

• Dado T imágenes co-registradas t = 1, ..., T

- Dado T imágenes co-registradas t = 1, ..., T
- $i \in S$, representa un área geográfica

- Dado T imágenes co-registradas t = 1, ..., T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\{\mathbf{x}_{i,t}\}_{i \in S, t \in T} : \text{atributo extraido en } i \text{ y epoca } t, \ \mathbf{y} = {\{y_{i,t}\}_{i \in S, t \in T} \text{ su respectivo label}}$

- Dado T imágenes co-registradas t=1,...,T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\{\mathbf{x}_{i,t}\}_{i \in S, t \in T} : \text{atributo extraido en } i \text{ y epoca } t, \ \mathbf{y} = {\{y_{i,t}\}_{i \in S, t \in T} \text{ su respectivo label} }$
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

- Dado T imágenes co-registradas t=1,...,T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\mathbf{x}_{i,t}}_{i \in S, t \in T}$: atributo extraido en i y epoca t, $\mathbf{y} = {y_{i,t}}_{i \in S, t \in T}$ su respectivo label
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[\exp\left(\sum_{t \in T} \sum_{i \in S} AP^t(y_{i,t}, \mathbf{x}) + \theta \sum_{t \in T} \sum_{i \in S} \sum_{j \in N_i} SIP^t(y_{i,t}, y_{j,t}, \mathbf{x}) + \sum_{t \in T} \phi^t \sum_{i \in S} \sum_{k \in C_i} TIP^{tk}(y_{i,t}, y_{i,k}, \mathbf{x}) \right) \right]$$

- Dado T imágenes co-registradas t=1,...,T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\mathbf{x}_{i,t}}_{i \in S, t \in T}$: atributo extraido en i y epoca t, $\mathbf{y} = {y_{i,t}}_{i \in S, t \in T}$ su respectivo label
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

$$P(\mathbf{y}|\mathbf{x}) = \left[\frac{1}{Z}\right] \left[\exp\left(\sum_{t\in T}\sum_{i\in S}AP^{t}(y_{i,t},\mathbf{x}) + \theta\sum_{t\in T}\sum_{i\in S}\sum_{j\in N_{i}}SIP^{t}(y_{i,t},y_{j,t},\mathbf{x}) + \sum_{t\in T}\phi^{t}\sum_{i\in S}\sum_{k\in C_{i}}TIP^{tk}(y_{i,t},y_{i,k},\mathbf{x})\right)\right]$$
Constante de Normalización

- Dado T imágenes co-registradas t=1,...,T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\mathbf{x}_{i,t}}_{i \in S, t \in T}$: atributo extraido en i y epoca t, $\mathbf{y} = {y_{i,t}}_{i \in S, t \in T}$ su respectivo label
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

$$P(\mathbf{y}|\mathbf{x}) = \left[\frac{1}{Z}\right] \left[\exp\left(\sum_{t \in T} \sum_{i \in S} \left[AP^t(y_{i,t}, \mathbf{x})\right] + \theta \sum_{t \in T} \sum_{i \in S} \sum_{j \in N_i} SIP^t(y_{i,t}, y_{j,t}, \mathbf{x}) + \sum_{t \in T} \phi^t \sum_{i \in S} \sum_{k \in C_i} TIP^{tk}(y_{i,t}, y_{i,k}, \mathbf{x})\right) \right]$$
Constante de Normalización
Potencial de Asociación: relación
entre datos y labels

- Dado T imágenes co-registradas t=1,...,T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\mathbf{x}_{i,t}}_{i \in S, t \in T}$: atributo extraido en i y epoca t, $\mathbf{y} = {y_{i,t}}_{i \in S, t \in T}$ su respectivo label
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

- Dado T imágenes co-registradas t=1,...,T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\{\mathbf{x}_{i,t}\}_{i \in S, t \in T} : \text{atributo extraido en } i \text{ y epoca } t, \ \mathbf{y} = {\{y_{i,t}\}_{i \in S, t \in T} \text{ su respectivo label} }$
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

- Dado T imágenes co-registradas t = 1, ..., T
- $i \in S$, representa un área geográfica
- $\mathbf{x} = {\{\mathbf{x}_{i,t}\}_{i \in S, t \in T} : \text{atributo extraido en } i \text{ y epoca } t, \ \mathbf{y} = {\{y_{i,t}\}_{i \in S, t \in T} \text{ su respectivo label} }$
- Multi-temporal CRF estima la probabilidad posterior $P(\mathbf{y}|\mathbf{x})$ de tener los labels \mathbf{y} dado los datos \mathbf{x}

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[\exp\left(\sum_{t \in T} \sum_{i \in S} AP^t(y_{i,t}, \mathbf{x}) + \theta \sum_{t \in T} \sum_{i \in S} \sum_{j \in N_i} SIP^t(y_{i,t}, y_{j,t}, \mathbf{x}) + \sum_{t \in T} \phi^t \sum_{i \in S} \sum_{k \in C_i} TIP^{tk}(y_{i,t}, y_{i,k}, \mathbf{x}) \right) \right]$$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \left[\exp\left(\sum_{t \in T} \sum_{i \in S} AP^t(y_{i,t}, \mathbf{x}) + \theta \sum_{t \in T} \sum_{i \in S} \sum_{j \in N_i} SIP^t(y_{i,t}, y_{j,t}, \mathbf{x}) + \sum_{t \in T} \phi^t \sum_{i \in S} \sum_{k \in C_i} TIP^{tk}(y_{i,t}, y_{i,k}, \mathbf{x}) \right) \right]$$

- Potencial de Asociación
 - Random Forest + atributos de textura (GLCM)
 - CNN usando cada imagen
 - CNN usando el stack de todas las imágenes
- Potencial de Interacción Espacial
 - Modelo Contrast-sensitive Potts
- Potencial de Interacción Temporal
 - Información de especialistas sobre transiciones posibles

Potencial de Asociación

Random Forest + atributos de textura (GLCM)

 $AP^{t}(y_{i,t}, \mathbf{x}) = \log P_{RF^{t}}(y_{i,t} | \mathbf{f}_{GLCM}(\mathbf{x}_{N_{i,t}}))$

 $w \times h \times N_{bands}$

t = 1

Feature

Extraction

 $w \times \tilde{h} \times N_{features}$

Random Forest + atributos de textura (GLCM)

Random Forest + atributos de textura (GLCM)

Random Forest + atributos de textura (GLCM)

Random Forest + atributos de textura (GLCM)

CNN usando cada imagen

 $AP^{t}(y_{i,t}, \mathbf{x}) = \log P_{CNN^{t}}(y_{i,t} | \mathbf{x}_{N_{i,t}})$

CNN usando cada imagen

 $AP^t(y_{i,t}, \mathbf{x}) = \log P_{CNN^t}(y_{i,t} | \mathbf{x}_{N_{i,t}})$

CNN usando cada imagen

 $AP^{t}(y_{i,t}, \mathbf{x}) = \log P_{CNN^{t}}(y_{i,t} | \mathbf{x}_{N_{i,t}})$

CNN usando cada imagen

 $AP^{t}(y_{i,t}, \mathbf{x}) = \log P_{CNN^{t}}(y_{i,t} | \mathbf{x}_{N_{i,t}})$

CNN usando el stack de todas las imágenes

 $AP^{t}(y_{i,t}, \mathbf{x}) = \log P_{CNN^{t}}(y_{i,t} | \mathbf{x}_{N_{i,1}} : \mathbf{x}_{N_{i,2}} : \dots : \mathbf{x}_{N_{i,T}})$

RESO INTERNACIONAL DE SISTEMAS

CNN usando el stack de todas las imágenes

 $AP^{t}(y_{i,t}, \mathbf{x}) = \log P_{CNN^{t}}(y_{i,t} | \mathbf{x}_{N_{i,1}} : \mathbf{x}_{N_{i,2}} : ... : \mathbf{x}_{N_{i,T}})$

 $w \times h \times N_{features}$

Pedro M. Achanccaray Diaz

Potencial de Interacción Espacial

Modelo Contrast-sensitive Potts

$$SIP^{t}(y_{i,t}, y_{j,t}, \mathbf{x}_{i,t}, \mathbf{x}_{j,t}) = \begin{cases} p + (1-p)e^{-d_{ij,t}^{2}/2\sigma_{t}^{2}}, y_{i,t} = y_{j,t} \\ 0, y_{i,t} \neq y_{j,t} \end{cases}$$

$$N_i$$

 $j \in N_i$

donde: $d_{ij,t} = \| \mathbf{g}_{i,t}(\mathbf{x}_{i,t}) - \mathbf{g}_{j,t}(\mathbf{x}_{j,t}) \|$

 σ^2 valor medio del cuadrado de $d_{ij,t}$

 $p \in [0,1]$ controla la influencia relativa de los términos dependientes e independientes de los datos.

Potencial de Interacción Temporal

Outline

1. Introducción

2. CRFs

3. Resultados

4. Conclusiones

Campo Verde

• Mato Grosso, Brasil

Campo Verde

- Mato Grosso, Brasil
- 14 Sentinel-1A / 5 Landsat 8

Year	Month	Date	
		Sentinel-1A	Landsat 8
2015	October	29	-
	November	10, 22	11
	December	04, 16	-
2016	January	21	-
	February	14	-
	March	09, 21	-
	April	-	19
	May	08, 20	05
	June	13	
	July	07, 31	08, 24

Campo Verde

- Mato Grosso, Brasil
- 14 Sentinel-1A / 5 Landsat 8
- Desde Octubre 2015 hasta Julio 2016

Campo Verde

- Mato Grosso, Brasil
- 14 Sentinel-1A / 5 Landsat 8
- Desde Octubre 2015 hasta Julio 2016
- Train/Test: 20% / 80%

Campo Verde

- Mato Grosso, Brasil
- 14 Sentinel-1A / 5 Landsat 8
- Desde Octubre 2015 hasta Julio 20
- Train/Test: 20% / 80%

specific Id (0 to 481)? Query Reset

http://www.obt.inpe.br/agricultural-database/campoverde/

Campo Verde Database

 Data Field 58
 Reference data (download)
 Sentinel-1 data (download)
 Landsat-8/OLI data

 (download)
 Photos
 Reference paper
 People involved
 Financial support

These photographs were taken during two field campaigns conducted in Campo Verde municipality between 14th-18th December 2015 and 9th-13th May 2016.

< Prev Next >

- 2 tipos de secuencias de imágenes:
 - **1 sensor**: **SAR** (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

- 2 tipos de secuencias de imágenes:
 - 1 sensor: SAR (Sentinel-1A)
 - Múltiples sensores: SAR (Sentinel-1A) + Óptico (Landsat 8)

reciente

Configuración Experimental

- Random Forest (RF): 250 arboles, profundidad máxima 25
 - Sentinel-1A (SAR)
 - Correlación, homogeneidad, media y varianza (GLCM)
 - Direcciones: 0° , 45° , 90° y 135° , ventanas de 3×3
 - 2 polarizaciones: VV y VH
 - Dimensión de vector de atributos: 32
 - Landsat 8 (Optical)
 - Bandas: 1, 2, 3, 4, 5, 6 y 7
 - NDVI
 - Dimensión de vector de atributos: 8

Configuración Experimental

• Convolutional Neural Network (CNN):

Layer	Output Size
- Input	$9 \times 9 \times N_{features}$
- Convolutional Block $(3 \times 3 \text{ Conv.}, \text{ B.N.}^7, \text{ Leaky ReLU})$	$9 \times 9 \times 80$
- Max Pooling (2×2)	$5 \times 5 \times 80$
- Convolutional Block $(1 \times 1 \text{ Conv.}, \text{ B.N.}, Leaky ReLU)$	$5 \times 5 \times 80$
- Convolutional Block $(3 \times 3 \text{ Conv.}, \text{ B.N.}, Leaky ReLU)$	$5 \times 5 \times 96$
- Max Pooling (2×2)	$3 \times 3 \times 96$
- Fully Connected	256
- B.N.	256
- Leaky ReLU	256
- Dropout	256
- Softmax	m_t

Configuración Experimental

- Para el CRF
 - Inferencia
 - Óptimo $\hat{\mathbf{y}}$ que maximiza $P(\mathbf{y}|\mathbf{x})$
 - Sum-product Loopy Belief Propagation (LBP)
 - Métricas
 - Overall Accuracy (OA) y average F1-score

Resultados 1 sensor

RESO INTERNACIONAL DE SISTEMAS

SRESO INTERNACIONAL DE SISTEMAS

RESO INTERNACIONAL DE SISTEMAS

RESO INTERNACIONAL DE SISTEMAS

Pedro M. Achanccaray Diaz

Pedro M. Achanccaray Diaz

RESO INTERNACIONAL DE SISTEMAS Y CIENCIA DE LA COMPUTACIÓN

Pedro M. Achanccaray Diaz

IGRESO INTERNACIONAL DE SISTEMAS

Pedro M. Achanccaray Diaz

RESO INTERNACIONAL DE SISTEMAS

Classification Maps

Sequence length: 14 Date: May 20th Sensor: SAR

FRESO INTERNACIONAL DE SISTEMAS

Classification Maps

Sequence length: 14 Date: May 20th Sensor: SAR

Classification Maps

Sequence length: 14 Date: May 20th Sensor: SAR

Classification Maps

Sequence length: 14 Date: May 20th Sensor: SAR

Classification Maps

Sequence length: 14 Date: May 20th Sensor: SAR

Classification Maps

Sequence length: 14 Date: May 20th Sensor: SAR

Classification Maps

Sequence length: 19 Date: July 31st Sensor: SAR

Classification Maps

Sequence length: 19 Date: July 31st Sensor: SAR

Outline

1. Introducción

2. CRFs

3. Resultados

4. Conclusiones

Conclusiones

- Campo Verde: 85% Overall Accuracy y 68% average F1-score.
- Variantes basadas en CNN (single image y image stack) obtuvieron mejores resultados que sus correspondientes usando Random Forest y atributos de textura (GLCM).
- Cada potencial del CRF adicionó mayor información de contexto: espacial y temporal, mejorando la clasificación
- La adición de conexiones de mayor orden ayudó a corregir algunas parcelas que fueron erróneamente clasificadas.

Conclusiones

- Campo Verde: 85% Overall Accuracy y 68% average F1-score.
- Variantes basadas en CNN (single image y image stack) obtuvieron mejores resultados que sus correspondientes usando Random Forest y atributos de textura (GLCM).
- Cada potencial del CRF adicionó mayor información de contexto: espacial y temporal, mejorando la clasificación
- La adición de conexiones de mayor orden ayudó a corregir algunas parcelas que fueron erróneamente clasificadas.

Conclusiones

- Campo Verde: 85% Overall Accuracy y 68% average F1-score.
- Variantes basadas en CNN (single image y image stack) obtuvieron mejores resultados que sus correspondientes usando Random Forest y atributos de textura (GLCM).
- Cada potencial del CRF adicionó mayor información de contexto: espacial y temporal, mejorando la clasificación
- La adición de conexiones de mayor orden ayudó a corregir algunas parcelas que fueron erróneamente clasificadas.

Conclusiones

- Campo Verde: 85% Overall Accuracy y 68% average F1-score.
- Variantes basadas en CNN (single image y image stack) obtuvieron mejores resultados que sus correspondientes usando Random Forest y atributos de textura (GLCM).
- Cada potencial del CRF adicionó mayor información de contexto: espacial y temporal, mejorando la clasificación
- La adición de conexiones de mayor orden ayudó a corregir algunas parcelas que fueron erróneamente clasificadas.

Reconocimiento de cultivos agrícolas en regiones tropicales usando secuencias de imágenes de teledetección de sensores activos y pasivos

Ph.D. Pedro M. Achanccaray Diaz

pedro.diaz@puc-rio.br

