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1.1. Deep Learning – Definition

Artificial Intelligence (AI)

A technology with wich we can create 

intelligent systems that can simulate 

human intelligence.

• Weak / General AI
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1.1. Deep Learning – Definition

Artificial Intelligence (AI)

A technology with wich we can create 

intelligent systems that can simulate 

human intelligence.

• Weak / General AI

• Strong AI (reasoning, judging, 

learning, communicating, awarenss, 

self-awareness)
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1.1. Deep Learning – Definition

Machine Learning (ML)

Artificial Intelligence (AI)

A technology with wich we can create 

intelligent systems that can simulate 

human intelligence.

AI’s subfield which allows 

machines to learn from data or 

past experience without being 

explicitly programmed.
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1.1. Deep Learning – Definition

Machine Learning (ML)

Artificial Intelligence (AI)

Deep Learning (DL)
A technology with wich we can create 

intelligent systems that can simulate 

human intelligence.

AI’s subfield which allows 

machines to learn from data or 

past experience without being 

explicitly programmed.

A type of ML algorithms that uses multiple layers 

to progressively extract higher-level features.

Image processing:

• Lower layers: identify edges

• Higher layers: identify relevant concepts for a 

human being (digits, letters, faces)
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1.1. Deep Learning – Definition

Machine Learning (ML)

Artificial Intelligence (AI)

Deep Learning (DL)
A technology with wich we can create 

intelligent systems that can simulate 

human intelligence.

AI’s subfield which allows 

machines to learn from data or 

past experience without being 

explicitly programmed.

A type of ML algorithms that uses multiple layers 

to progressively extract higher-level features.

Image processing:

• Lower layers: identify edges

• Higher layers: identify relevant concepts for a 

human being (digits, letters, faces)

First layers Last layers
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1.1. Deep Learning – Applications
Autonomous driving
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1.1. Deep Learning – Applications
Autonomous driving

Automatic translation

Text synthesis

Sentiment analysis
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1.2. Machine Learning – Algorithms

Algorithms that can learn from data.
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1.2. Machine Learning – Algorithms

Algorithms that can learn from data.

“A computer program is said to learn from experience 𝑬 with respect to some class of tasks 

𝑻, and performance measure D, if its performance on tasks 𝑻, as measured by D, 

improves with experience 𝑬.” – Mitchell, 1997.
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1.2. Machine Learning – Algorithms

Algorithms that can learn from data.

Input

(data)

Machine 
Learning 
Algorithm

Output
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1.2. Machine Learning – Tasks T

Tasks are described in terms of how the machine learning system should process a

sample.
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1.2. Machine Learning – Tasks T

Tasks are described in terms of how the machine learning system should process a

sample.

A sample is a collection of features that have been quantitatively measured from some

object or event.

Representation of a sample:

𝒙 ∈ ℝ𝑛, 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥𝑖 ⇒ feature, attribute, characteristic



Dr. Pedro Achanccaray Diaz | Deep Learning | Seite 22

1.2. Machine Learning – Tasks T

• Classification

• Regression

• Automatic translation

• Sampling and synthesis

• …
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1.2. Machine Learning – Tasks T

• Classification

• Regression

• Automatic translation

• Sampling and synthesis

• …

Specify which of the 𝑘 categories a 

sample belongs to.

input 

𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛

output, categories 

identified by a 

numerical code

y = 𝑓 𝒙
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1.2. Machine Learning – Tasks T

• Classification

• Regression

• Automatic translation

• Sampling and synthesis

• …

Specify which of the 𝑘 categories a 

sample belongs to.

input 

𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛

output, categories 

identified by a 

numerical code

y = 𝑓 𝒙

Details of loan 

applicants

Classification 

model

Group 1:

Potential defaulters

Group 2:

Potential Non 

defaulters
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1.2. Machine Learning – Tasks T

• Classification

• Regression

• Automatic translation

• Sampling and synthesis

• …

Predict a numerical value given an input.
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1.2. Machine Learning – Tasks T
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• Automatic translation

• Sampling and synthesis
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Input: a sequence of symbols in some language

Output: a sequence of symbols in another language
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1.2. Machine Learning – Tasks T

• Classification

• Regression

• Automatic translation

• Sampling and synthesis

• …

Generate new samples that are similar to those of the 

training data.
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1.2. Machine Learning – Tasks T

• Classification

• Regression

• Automatic translation

• Sampling and synthesis

• …

Generate new samples that are similar to those of the 

training data.

https://www.thispersondoesnotexist.com/

https://www.thispersondoesnotexist.com/
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1.2. Machine Learning – Performance measure D

The performance measure 𝑫 is specific to the task 𝑻.
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1.2. Machine Learning – Performance measure D

The performance measure 𝑫 is specific to the task 𝑻.

Task: classification, accuracy is usually measured

• Proportion of samples for which the model produces the correct output.

• Error rate: proportion of samples for which the model produces an incorrect output.
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1.2. Machine Learning – Experience E

• Unsupervised learning

• Supervised learning
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1.2. Machine Learning – Experience E

• Unsupervised learning

• Supervised learning

Learns from samples 

represented by features

Learns from samples 

represented by features and 

labels

Face recognition

Weather forecasting

Text-to-Image translation
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1.3. Artificial Neural Networks

Watanabe, S., Sakamoto, J., & Wakita, M. (1995). Pigeons’ 

discrimination of paintings by Monet and 

Picasso. Journal of the experimental analysis of 

behavior, 63(2), 165-174.
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1.3. Artificial Neural Networks

Watanabe, S., Sakamoto, J., & Wakita, M. (1995). Pigeons’ 

discrimination of paintings by Monet and 

Picasso. Journal of the experimental analysis of 

behavior, 63(2), 165-174.

Experiment:

▪ Pigeon in a Skinner box.

▪ Paintings by two artists are presented: Monet 

and Picasso.

▪ The pigeon receives a reward if it presses the 

button when Picasso paintings are presented.
“Three musicians masks” - Picasso “Pathway in Monet's Garden at 

Giverny” – C. Monet
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1.3. Artificial Neural Networks

• The pigeons were able to discriminate between both paints with an accuracy of 95%

during training (e.g. paintings seen many times).
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during training (e.g. paintings seen many times).

• In the test set (e.g. paintings seen just one time), the accuracy was 𝟖𝟓%.

• The pigeons did not memorize the paintings.

• They can extract and recognize patterns => style.

• They are able to generalize from what has already been seen to make decisions.
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1.3. Artificial Neural Networks

• The pigeons were able to discriminate between both paints with an accuracy of 95%

during training (e.g. paintings seen many times).

• In the test set (e.g. paintings seen just one time), the accuracy was 𝟖𝟓%.

• The pigeons did not memorize the paintings.

• They can extract and recognize patterns => style.

• They are able to generalize from what has already been seen to make decisions.

• Capacity of Neural Networks (biological and artificial)!
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1.3. Artificial Neural Networks

Biological neuron Artificial neuron
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1.3. Artificial Neural Networks

Biological neural network

…

…

…
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1.3. Artificial Neural Networks

Biological neural network Artificial neural network

…

…

…

… … … …
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1.3. Artificial Neural Networks

Biological neural network Artificial neural network

…

…

…

… … … …

Input 

layer
Hidden layers

Output 

layer
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1.3. Artificial Neural Networks
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1.3. Artificial Neural Networks

𝑢𝑘 =

𝑗=1

𝑚

𝑤𝑘𝑗𝑥𝑗

𝑦𝑘 = 𝜑 𝑢𝑘 + 𝑏𝑘
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1.3. Artificial Neural Networks

𝑢𝑘 =

𝑗=1

𝑚

𝑤𝑘𝑗𝑥𝑗

𝑦𝑘 = 𝜑 𝑢𝑘 + 𝑏𝑘
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1.3. Neural Networks and Deep Learning

… … … …

Neural Network
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1.3. Neural Networks and Deep Learning

… … … …

Neural Network Deep Learning Neural Network

… … … …… … ……
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1.4. Computer Vision

Computer Vision

how computers can understand digital 

images or videos and extract information
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Computer Vision

how computers can understand digital 

images or videos and extract information

Autonomous driving [Source]

https://www.youtube.com/watch?v=ATlcEDSPWXY
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1.4. Computer Vision

Computer Vision

how computers can understand digital 

images or videos and extract information

Autonomous driving [Source]

Abnormalities identification 

[Source]

https://www.youtube.com/watch?v=ATlcEDSPWXY
https://www.topbots.com/semantic-segmentation-guide/
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1.4. Computer Vision

Computer Vision

how computers can understand digital 

images or videos and extract information

Autonomous driving [Source]

Abnormalities identification 

[Source]

Land Use, Land Cover | Road extraction [Source]

https://www.youtube.com/watch?v=ATlcEDSPWXY
https://www.topbots.com/semantic-segmentation-guide/
https://developers.arcgis.com/python/guide/how-unet-works/
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1.4. Computer Vision

Computer Vision

how computers can understand digital 

images or videos and extract information

Autonomous driving [Source]

Scene understanding | Visual Question and 

Answer (VQA) [Source]
Abnormalities identification 

[Source]

Land Use, Land Cover | Road extraction [Source]

https://www.youtube.com/watch?v=ATlcEDSPWXY
https://arxiv.org/pdf/1606.04797.pdf
https://www.topbots.com/semantic-segmentation-guide/
https://developers.arcgis.com/python/guide/how-unet-works/
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1.5. Remote Sensing

Remote Sensing

acquisition of information about an object or 

phenomenon without making physical contact 

with it
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Remote Sensing

acquisition of information about an object or 
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Digital Cameras [Source]

https://www.mdpi.com/2072-4292/8/3/257/htm
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1.5. Remote Sensing

Remote Sensing

acquisition of information about an object or 

phenomenon without making physical contact 

with it

Digital Cameras [Source]

Lidar [Source]

https://www.mdpi.com/2072-4292/8/3/257/htm
https://makeagif.com/gif/velodyne-lidar-101-IjL8UD
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1.5. Remote Sensing

Remote Sensing

acquisition of information about an object or 

phenomenon without making physical contact 

with it

Digital Cameras [Source]

Lidar [Source]

Satellites [Source]

https://www.mdpi.com/2072-4292/8/3/257/htm
https://makeagif.com/gif/velodyne-lidar-101-IjL8UD
https://www.geomotion.com.au/insar-monitoring.html
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1.6. Computer Vision tasks
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1.6. Computer Vision tasks

“assign a label to the 

whole image”

Cat
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1.6. Computer Vision tasks (remote sensing)

“assign a label to the 

whole image”
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1.6. Computer Vision tasks (remote sensing)

“assign a label to the 

whole image”

“assign a label to each 

pixel in the image”

Hall

Background
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1.6. Computer Vision tasks (remote sensing)

“assign a label to the 

whole image”

“assign a label to each 

pixel in the image”

“find where an object is in 

the image”

Hall

Background
𝒙𝟏, 𝒚𝟏, 𝒘𝟏, 𝒉𝟏 𝒙𝟐, 𝒚𝟐, 𝒘𝟐, 𝒉𝟐

(Regression)
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2. Application

Mass Monument Industrial Hall?
Classification of steel construction system halls of the High Modernism period and their attribution for an 

automated airborne image-based acquisition

P. Achanccaray · M. Gerke · L. Wesche · S. Hoyer · K. Thiele · U. Knufinke · C. Krafczyk

Site: https://kulturerbe-konstruktion.de/spp-2255-teilprojekt/massenphaenomen-gewerbehalle-c3/

https://kulturerbe-konstruktion.de/spp-2255-teilprojekt/massenphaenomen-gewerbehalle-c3/
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2. Industrial Halls – Types

• Turnhalle – KT 60 L

• Bogenhalle – Ruhland

• Other types

Turnhalle – KT 60 L

Bogenhalle – Ruhland



Dr. Pedro Achanccaray Diaz | Deep Learning | Seite 89

2. Industrial Halls – Locations

KT60L

Ruhland
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2. Industrial Halls – Samples

KT60L

Ruhland
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2. Industrial Halls – Samples

KT60L

Ruhland
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2. Dataset

Images:

• Digital Orthophotos – DOP 

(appearance, texture)

• Digital Elevation Model – DEM  

(height)

• 20 cm spatial resolution

Labels:

• Supervised learning

• Manually delineated

DOP

DEM
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3. Task

“assign a label to the 

whole image”

“assign a label to each 

pixel in the image”

“find where an object is in 

the image”

Hall

Background
𝒙𝟏, 𝒚𝟏, 𝒘𝟏, 𝒉𝟏 𝒙𝟐, 𝒚𝟐, 𝒘𝟐, 𝒉𝟐
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3. Task

“assign a label to each 

pixel in the image”

“find where an object is in 

the image”

Hall

Background
𝒙𝟏, 𝒚𝟏, 𝒘𝟏, 𝒉𝟏 𝒙𝟐, 𝒚𝟐, 𝒘𝟐, 𝒉𝟐
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4. Deep Learning model

Model: U-Net

Source: Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks 

for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28

https://doi.org/10.1007/978-3-319-24574-4_28
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4. Deep Learning model

Model: U-Net

D
O

P
D

E
M

Source: Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks 

for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28

https://doi.org/10.1007/978-3-319-24574-4_28
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4. Deep Learning model

Model: U-Net

D
O

P
D

E
M

weights - 𝝎1

Source: Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks 

for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28

https://doi.org/10.1007/978-3-319-24574-4_28
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4. Deep Learning model

Model: U-Net

Source: Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks 

for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28
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weights - 𝝎1

performance 

measure

https://doi.org/10.1007/978-3-319-24574-4_28
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4. Deep Learning model

Model: U-Net Prediction

Reference

D
O

P
D

E
M

weights - 𝝎2

performance 

measure

Source: Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks 

for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28

https://doi.org/10.1007/978-3-319-24574-4_28
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4. Deep Learning model

Model: U-Net Prediction

Reference

D
O

P
D

E
M

weights - 𝝎𝑛

Source: Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks 

for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28

performance 

measure

https://doi.org/10.1007/978-3-319-24574-4_28


Dr. Pedro Achanccaray Diaz | Deep Learning | Seite 101

5. Results

Detection rate

System halls – Testing 

Detected Missed False positives

25 1 2

System halls – Blind testing

Detected False positive

2 4

(not use during training, we know if there are halls or not)

(not use during training, we do not know if there are halls or not)
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5. Results – Testing 
0.4 km x 0.4 km Processing time: ~6 s

Reference (orange)

Prediction (blue)
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5. Results – Testing 
0.4 km x 0.4 km Processing time: ~6 s

Reference (orange)

Prediction (blue)



Dr. Pedro Achanccaray Diaz | Deep Learning | Seite 104

5. Results – Blind Testing 
1 km x 1 km Processing time: ~24 s

Google Earth

New detection

Prediction (blue)
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5. Results – Blind Testing 
1 km x 1 km Processing time: ~24 s

Google Earth

False Positive

Prediction (blue)
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Outline

1. Introduction

1) Deep Learning

2) Machine Learning

3) Artificial Neural Networks

4) Computer Vision

5) Remote Sensing

6) Computer Vision tasks

2. Application: Automatic detection of system halls

3. Lab
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3. Lab

• Create a folder in your Google Drive and upload the files.
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3. Lab

• Google Colaboratory

1
Right click on the Deep_Learning.ipynb file. Go 

to Open with => Connect more apps.

2 Search for Colaboratory app and select it.

3 Click on Install.
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3. Lab

• Google Colaboratory

4
Right click on the Deep_Learning.ipynb file. Go 

to Open with => Google Colaboratory.


